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Abstract. Recent work of Griffin, Ono, Rolen, and Zagier shows that the Jensen poly-
nomials for the Riemann xi function converge to the Hermite polynomials under a suitable
normalization. We generalize this result, proving that the normalized Jensen polynomials
for a large class of genus zero or one entire functions converge either to the Hermite polyno-
mials, or to a new class of polynomials which can be written as a confluent hypergeometric
function.

1. Introduction and statement of results

Given a sequence {α(n)}∞n=0 of real numbers, define the Jensen polynomial of degree d and
shift n for α to be

Jd,nα (X) :=
d∑
j=0

(
d

j

)
α(n+ j)Xj.

In [1], the authors showed that for arithmetic functions satisfying appropriate growth
conditions, there is a renormalization of the Jensen polynomials which converges as n goes
to infinity. Following [1], we define renormalized Jensen polynomials given by

Ĵd,nα (X) :=
δ(n)−d

α(n)
Jd,nα

(
δ(n)X − 1

E(n)

)
,

where {δ(n)} and {E(n)} are appropriate sequences of positive real numbers depending on
α. The following from from [1] describes the limiting behavior of the renormalized Jensen
polynomials.

Theorem 1.1 (Theorem 8 of [1]). Suppose that {α(n)}, {E(n)}, and {δ(n)} are sequences
of real numbers, with E(n) and δ(n) positive, and with δ(n) tending to 0, and that F (t) =∑∞

i=0 cit
i is a formal power series with complex coefficients. For a fixed d ≥ 1, suppose that

there are real sequences {C0(n)}, . . . , {Cd(n)}, with limn→+∞Ci(n) = ci for 0 ≤ i ≤ d, such
that for 0 ≤ j ≤ d we have

(1.1)
α(n+ j)

α(n)
E(n)−j =

d∑
i=0

Ci(n) δ(n)iji + o
(
δ(n)d

)
as n→ +∞.

Then we have

lim
n→+∞

Ĵd,nα (X) = HF,d(X),

1
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where the polynomials HF,m(X) ∈ C[x] are defined either by the generating function
F (−t) eXt =

∑
HF,m(X) tm/m! or in closed form by HF,m(X) := m!

∑m
k=0 (−1)m−kcm−kX

k/k! .

This theorem was applied to the sequence {γ(n)} of positive real numbers defined by the
Taylor expansion

∞∑
j=0

γ(j)

j!
· z2j =: 8ξ

(1

2
+ z
)
,

where it was shown that there is an appropriate choice of δ(n) and E(n), along with the

generating function F (t) = e−t
2
, such that the sequence γ(n) satisfies (1.1). Thus, as n→∞,

the renormalized Jensen polynomials Ĵd,nγ (X) converge to (a non-standard normalization of)
the Hermite polynomials Hd(X). The normalized Hermite polynomials used in [1] are defined

as the orthogonal polynomials for the measure µ(X) = e−X
2/4, or more explicitly by the

generating function
∞∑
d=0

Hd(X)
td

d!
= et

2−Xt

and in closed form by Hd(X) :=
∑bd/2c

k=0
(−1)kd!
k!(d−2k)! ·X

d−2k . Since the coefficients of the Jensen

polynomials are real, and their roots must come in conjugate pairs. However, since the zeros
of Hd(X) are real and simple, the zeros of the Jensen polynomials Jd,nγ , for sufficiently large
n, have distinct real parts and are therefore real.

In this paper, we study a large class of sequences {α(n)}, for which a similar process holds.

Definition 1.2. We will say that {α(n)} is governed by a function F (t) =
∑∞

i=0 cit
i if

there are functions δ : R+ → R (called the uniformizer) and E : R+ → R (called the
exponential component) and a sequence of real numbers {Ci(n)} for each i ≥ 0, with the
following properties.

(1) The function δ is positive for all x > 0, but limx→∞ δ(x) = 0.
(2) The function E is positive for all x > 0.
(3) For each i ≥ 0, limn→∞Ci(n) = ci.
(4) We have that

(1.2)
α(n+ j)

α(n)
E(n)−j =

∞∑
i=0

Ci(n)δ(n)iji.

Remark. Note that if a sequence α(n) is governed by a function F (t), then it satisfies
Theorem 1.1 for any d ≥ 1. Therefore, we have

lim
n→+∞

Ĵd,nα (X) = HF,d(X),

where the polynomials HF,m(X) are defined as in the conclusion of Theorem 1.1.

In [1], the authors used the fact that the coefficients γ(n) are interpolated by some analytic
function to show that they satisfy the conditions of Theorem 1.1. Many other important
functions share this property, including L−functions and hypergeometric functions. In this
paper we consider sequences {α(n)} which arise from the values of some smooth function
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α(z) at nonnegative integers. Specifically, our main theorems analyze the case when α(z) is
an entire function of genus zero or one whose zeros have their real part bounded above. In
this situation, α(z) has the Hadamard product expansion

(1.3) α(z) = czk eaz
∏
n

(
1− z

zn

)
ez/zn ,

where a, c ∈ R, k ≥ 0, and the zn are the nonzero roots of α(z) = 0 (counted according to
multiplicity) satisfying:

(1) Re(z1) ≥ Re(z2) ≥ Re(z3) . . . ,
(2)

∑
n |zn|−2 <∞.

Furthermore, we require that α(z) be real-valued along the real axis. We show that the
possible generalized Hermite polynomials that arise depend on whether α(z) has finitely or
infinitely many zeros.

The case of infinitely many roots includes the sequence γ(n) discussed above. In particular
the exact formula for γ(n) given in (13) of [1] has a leading term of n!

(2n)!
. In order to extend γ

analytically, we write this term as a ratio of Γ-functions, which gives zeros at every negative
half-integer.

Theorem 1.3. Let α(z) be an entire function of genus ≤ 1, real-valued on R≥0, with in-
finitely many roots. Furthermore, assume the real parts of the the roots are bounded above.
Then the sequence {α(n)}∞n=0 is governed by F (t) = e−t

2
, with some uniformizer δ(z) and

exponential component E(z).

From Theorem 1.1 we can immediately deduce the following.

Corollary 1.4. Assume the hypotheses and notation of Theorem 1.3. Then, for any d ≥ 1
we have

lim
n→∞

δ(n)−d

α(n)
Jd,nα

(
δ(n)X − 1

E(n)

)
= Hd(X),

and since the Hermite polynomials have real and simple zeros, it follows that for all but
finitely many values of n, the Jensen polynomials Jd,nα (X) have only real zeros.

Our second main result concerns entire functions of the type in Theorem 1.3, but with a
finite number of zeros.

Theorem 1.5. Let α(z) be an entire function of genus ≤ 1, real-valued on R≥0, with r <∞
zeros, counting multiplicities (so that α(z) = P (z)eaz for some polynomial P (z)). Then
the sequence {α(n)}∞n=0 is governed by F (t) = (1 + t)re−rt, with some uniformizer δ(z) and
exponential component E(z).

Example 1. An intuitive explanation of Theorem 1.5 can be given as follows: The most
basic functions satisfying the theorem statement are the polynomials α(z) = zr, for some r.
We will see that natural choices for δ(z) and E(z) are

δ(z) = 1/n and E(n) = e1/n.
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In the RHS of (1.2), finding the function F (t) is essentially equivalent to substituting t =
jδ(n) and then taking n→∞. Doing this, we have

α(n+ j)

α(n)
E(n)−j =

(
1 +

j

n

)r
e−rj/n

→ (1 + t)re−rt.

Motivated by the conclusion of Theorem 1.1, we define gr,m(X) ∈ R[X] to be the general-
ized polynomials generated by (1 + t)re−rt, so that

(1.4) (1− t)reXt+rt =:
∞∑
m=0

gr,m(X)
tm

m!

By expanding the left-hand side and collecting powers of t, we find that

gr,m(X) = m!
m∑
j=0

(
r

j

)
(X + r)m−j(−1)j

(m− j)!
(1.5)

= U(−m, 1−m+ r,X + r)

where U is the confluent hypergeometric function of the second kind. As shown in (4.2), these
functions are exactly the (un-normalized) Jensen polynomials for a certain modification of
the a J-Bessel function given in (4.1).

Next, we calculate the limiting Jensen polynomials for sequences {α(z)} which satisfy the
hypotheses of Theorem 1.5.

Corollary 1.6. Assume the hypotheses and notation of Theorem 1.5. Then, for any d ≥ 1
we have

lim
n→∞

δ(n)−d

α(n)
Jd,nα

(
δ(n)X − 1

E(n)

)
= gr,d(X).

The polynomials gr,m(X) are very different in some regards from the standard Hermite
polynomials Hd(X), but they have several interesting properties which mimic some of the
known properties of Hd(X).

Theorem 1.7. For any nonnegative integer m, the polynomials gr,m(X) defined in (1.4)
satisfy the following:

(1) We have

(1.6)
d

dX
gr,m(X) = mgr,m−1(X).

(2) If r is a nonnegative integer, then

(1.7) gr,m(X) = (X + r)m−rgm,r(X).

(3) If r is a nonnegative integer, then gr,m(X) has only real roots.

This needs attention too
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Remark. In [3], Farmer shows that the cosine function is a ”universal attractor,” and
our results illustrate this principle in a more precise manner that gives the actual limiting
polynomials.

2. Higher Logarithmic Derivatives

To prove Theorems 1.3 and 1.5, we show that they are special cases of more general
Theorems 2.1 and 2.2, respectively, which only require that the function α(z) be real-valued
and infinitely differentiable on the positive real axis.

The conditions of Theorems 2.1 and 2.2 given below are based on properties of the higher
logarithmic derivatives of α(z), given for m ≥ 1 by

(2.1) Am(z) :=
dm−1

d zm−1

(
α′(z)

α(z)

)
.

If

α(z) = czk eaz
∏
n

(
1− z

zn

)
ez/zn

is of the Hadamard product form given in (1.3), we can write

(2.2) Am(z) = (−1)m−1(m− 1)!

[
k

zm
+
∑
n

1

(z − zn)m

]
for any m ≥ 2.

Theorems 2.1 and 2.2 apply for functions whose higher logarithmic derivatives are well-
behaved in a certain sense. In particular, we require that the limits limn→∞ n

mAm(n) for
m > 2 are dominated in a certain way by the m = 2 case, limn→∞ n

2A2(n).
We deduce Theorem 1.3 from the following result:

Theorem 2.1. Let α : R≥0 → R be an analytic function. For each m ≥ 1 let Am(x) be as
above. Suppose that the sequence {A2(n)} tends to 0 as n→∞, but that

lim
n→∞

n2A2(n) = ±∞.

Let sα ∈ {±1} be the sign of this limit. Suppose further that for each m ≥ 3, we have

lim
n→∞

Am(n)2

A2(n)m
= 0.

Then the sequence {α(n)}∞n=0 is governed by F (t) = esαt
2
, with exponential component E(n) =

eA1(n) = e
α′(n)
α(n) and uniformizer δ(n) =

√
|A2(n)|

2
.

We deduce Theorem 1.5 from the following more general result.

Theorem 2.2. Let α(x) be an infinitely differentiable real-valued function on the positive
real axis. Define Am(x) as in (2.1), and suppose that for each integer m ≥ 2 the sequential
limit

lim
n→∞

nmAm(n)
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exists and is finite.
Let r := − limn→∞ n

2A2(n). Then {α(n)}∞n=0 is governed by F (t) = (1 + t)re−rt, with

exponential component E(n) = eA1(n) = e
α′(n)
α(n) and uniformizer δ(n) = 1/n.

Remarks.
(1) If α(n) is a rational function of degree D, or the product of a rational function of

degree D and the exponential of a linear function, then it satisfies the conditions of Theorem
2.2 with r = D.

(2) Theorem 1.5 follows as an immediate consequence of Theorem 2.2 and (2.2).

2.1. Proof of Theorem 2.1. Define a sequence Bm(n) for each m ≥ 0 such that

α(n+ j)

α(n)
E(n)−j =:

∞∑
m=0

Bm(n)jm.

By considering the coefficient of jm in the product of the two power series

α(n+ j)

α(n)
=
∞∑
i=0

α(i)(n)

i!α(n)
ji

and

E(n)−j =
∞∑
k=0

1

k!

(
−j α

′(n)

α(n)

)k
,

we can write Bm(n) as an expression made up of derivatives of α(n). Furthermore, if α(n) > 0
for all n, we have the alternate expansion

α(n+ j)

α(n)
E(n)−j = exp

(
log

(
α(n+ j)

α(n)

)
− A1(n)j

)
=
∞∑
i=1

1

i!

(
∞∑
m=2

Am(n)

m!
jm

)i

.

It follows that

(2.3)
∞∑
m=1

Bm(n)jm =
∞∑
i=1

1

i!

(
∞∑
k=2

Ak(n)

k!
jk

)i

,

even if we do not assume that α(n) > 0 for all n.
Now define Cm(n) = 1

δ(n)m
Bm(n) and expand 2.3 in powers of j, obtaining

Cm(n) =
1

δ(n)m

∑
λ`m
λ1=0

1

(`λ)!

m∏
i=2

(
Ai(n)

i!

)λi

=
∑
λ`m
λ1=0

1

(`λ)!

m∏
i=2

(
Ai(n)

i! δ(n)i

)λi
(2.4)
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where λ is a partition of m, `λ is the length of λ, and λi is the number of parts of λ of size i.

By hypothesis, the factor Ai(n)
i! δ(n)i

tends to 0 as n → ∞ for i ≥ 3. Since additionally
A2(n)
2! δ(n)2

→ sα as n→∞, it follows that if m = 2k then

lim
n→∞

Cm(n) =: cm = skα/k!,

and if m = 2k + 1 then
lim
n→∞

Cm(n) =: cm = 0.

Thus F (t) =
∑∞

m=0 cmt
m = exp(sαt

2) which completes the proof.

2.2. Proof of Theorem 2.2. We begin by analyzing the growth of the logarithmic deriva-
tives Am(n), working inductively on m ≥ 2 to show that

(2.5) lim
n→∞

nmAm(n) = (−1)m−1 (m− 1)! r.

The base case is m = 2, which is given. Assuming (2.5) holds for m = k as the inductive
hypothesis, we have

(−1)k−1 (k − 1)! r = lim
n→∞

Ak(n)

n−k
= lim

n→∞

Ak+1(n)

−k n−(k+1)

by L’Hôpital’s rule, which is valid since limn→∞Ak(n) = 0, and since the last limit exists by
hypothesis. Equation (2.5) follows for all m ≥ 2 by induction.

For each m ≥ 0, define cm(r) :=
∑m

i=0
(−r)i
i!

(
r

m−i

)
, or by the generating function

(2.6) (1 + t)re−rt =:
∞∑
m=0

cm(r)tm.

We also have

(1 + t)re−rt = exp (r log(1 + t)− rt)

=
∞∑
k=0

(
−r

∞∑
i=2

(−t)i

i

)k

/k!

=
∞∑
m=0

(−1)m
∑
λ`m
λ1=0

(−r)`λ
(`λ)!

m∏
i=2

(
1

i

)λi tm,
where we use the same partition notation as in (2.4). It follows that

(2.7) (−1)m
∑
λ`m
λ1=0

(−r)`λ
(`λ)!

m∏
i=2

(
1

i

)λi
= cm(r).

Define a sequence Cm(n) for each m ≥ 0 such that

α(n+ j)

α(n)
E(n)−j =:

∞∑
m=0

Cm(n)δ(n)mjm;
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then, to prove theorem 2.2, it suffices to show that limn→∞Cm(r) = cm(r) for each m ≥ 0.
As in (2.4), we have

Cm(n) =
∑
λ`m
λ1=0

1

(`λ)!

m∏
i=2

(
Ai(n)

i! δ(n)i

)λi
.

Then

lim
n→+∞

Cm(n) =
∑
λ`m
λ1=0

1

(`λ)!

m∏
i=2

(
(−1)i−1 r

i

)λi
= cm(r)

by (2.5) and (2.7). Theorem 2.2 follows.

3. Proof of Theorem 1.3

To prove Theorem 1.3, we show that all functions α(z) of the form given in (1.3) satisfy
the hypotheses of Theorem 2.1, with sα = −1. Suppose that

α(z) = czk eaz
∞∏
n=1

(
1− z

zn

)
ez/zn

is such a function, and consider only those values of z = x ∈ R+.
Recall that

Am(x) = (−1)m−1(m− 1)!

[
k

xm
+
∞∑
n=1

1

(x− zn)m

]
.

For all x > max(0, 2 Re(z1)), we have |x− zn| > |zn|, so the convergence of
∑

n |zn|−2 implies
that Am(x) is finite for all m ≥ 2 and x > max(0, 2 Re(z1)). We can also deduce that each
Am(x) (and in particular A2(x)) tends to 0 as x→∞.

However,

x2A2(x) = −

[
k +

∞∑
n=1

1

(1− zn/x)2

]
tends to −∞ as x→∞ because each term in the sum approaches 1.

Thus, to prove Theorem 1.3, it suffices just to show that

(3.1) lim
x→+∞

Am(x)2

A2(x)m
= 0

for all m ≥ 3.
Renumber the zeros of α(z) as w1, w2, . . . to include those which are equal to 0 (included

k times), but maintaining the property Re(w1) ≥ Re(w2) ≥ . . . . Fix m ≥ 3 and define

f(x) :=
(−1)m

((m− 1)!)2
Am(x)2

A2(x)m
=

(∑∞
n=1

1
(x−wn)m

)2
(∑∞

n=1
1

(x−wn)2

)m .
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We wish to show that limx→+∞ f(x) = 0. Let ε > 0; then we will show that there exists
X ∈ R+ such that f(x) < ε for all real x > X (we have f(x) > 0 for x > Re(w1)).

For a natural number N, define

fN(x) :=

(∑N
n=1

1
(x−wn)m

)2
(∑N

n=1
1

(x−wn)2

)m
=

(∑N
n=1

1
(1−wn/x)m

)2
(∑N

n=1
1

(1−wn/x)2

)m .
We have limx→∞ fN(x) = N2−m, since each term approaches 1 as x→∞ in the sums in both
the numerator and denominator of the last quotient. Choose N0 ∈ N such that N2−m

0 < ε
2
.

Then there exists X ∈ R+ such that |fN0(x) − N2−m
0 | < ε

2
for x > X. We will show that

fN(x) > f(x) for all N ∈ N and x ∈ R+; then for x > X we will have

f(x) < fN0(x)

≤ |fN0(x)−N2−m
0 |+N2−m

0

<
ε

2
+
ε

2
= ε,

which will complete the proof.
To show that fN(x) > f(x), we instead show that fK(x) > fK+1(x) for all K ∈ N and

x > Re(w1). Given K ∈ N, renormalize

fN(x) =

(∑N
n=1

(
x−wK+1

x−wn

)m)2
(∑N

n=1

(
x−wK+1

x−wn

)2)m =:
PN(x)2

QN(x)m
.

We have PN(x) ≥ QN(x) ≥ 1. Then fK+1(x) = (PK(x)+1)2

(QK(x)+1)m
, so fK(x) > fK+1(x) is equivalent

to
PK(x)2

QK(x)m
>

(PK(x) + 1)2

(QK(x) + 1)m
,

or

PK(x)2

(
m−1∑
i=0

(
m

i

)
QK(x)i

)
> QK(x)m(2PK(x) + 1).

We have

PK(x)2

(
m−1∑
i=0

(
m

i

)
QK(x)i

)
> mPK(x)2QK(x)m−1

≥ mPK(x)QK(x)m

≥ QK(x)m(2PK(x) + 1)

as desired. Theorem 1.3 follows.
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4. The polynomials gr,m(X)

We conclude the paper by proving the properties of the polynomials gr,m(X) contained in
Theorem 1.7.

Proof of Theorem 1.7. Equations (1.6) and (1.7) follow easily from (1.5).
We now show that gr,m(X) has only real zeros for nonnegative integers r. If m > r, we use

(1.7) to reduce to the case that r ≥ m. In this case, we will show that the gr,m(X) are the
(unnormalized) Jensen polynomials for a function constructed from the J-Bessel function.
Add reference for this Since the J-Bessel function has real zeros and Weierstrass genus
zero, we may apply a theorem of Jensen to show that these Jensen polynomials themselves
have real zeros.

Let

Gr,m(X) := r!(−1)mX
m−r

2 Jr−m(2
√
X)(4.1)

=
∞∑
n=0

r!

(r −m+ n)!
(−1)m−n

Xn

n!

and define the sequence {αr,m(n)} to be the Taylor coefficients given by

αr,m(n) = (−1)m−n
r!

(r −m+ n)!
.

Then we see the Jensen polynomial Jm,0α (X) satisfies

Jm,0α (X) =
m∑
j=0

r!

(r −m+ j)!

(
m

j

)
(−1)m−jXj(4.2)

= gr,m(X − r).
The J-Bessel functions have real zeros for ν > −1, which implies that Gr,m(X) has real

zeros as well. Therefore, applying Jensen’s theorem, we obtain the result.
�
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